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Abstract. When the differential cross-section for spin-zero elastic scattering is given,
the elastic unitarity condition constitutes a nonlinear integral equation for the phase of
the scattering amplitude. Existence and uniquences theorems for solutions of the equation
were obtained by Newton and Martin. Some improvements of the Newton-Martin results
on uniqueness and iterative construction of solutions are obtained. Certain details of
rigour in the applications of Schauder's theorem by Newton and by Martin are supplied.
The case of inelastic spin-zero scattering is treated by adding a term to the unitarity con-
dition to account for absorption. It is shown that in the inelastic region one may have
infinitely many different scattering amplitudes with a given differential cross-section. This
result is potentially important in phase-shift analysis, since it means that there is a
''continuum ambiguity" in the determination of phases and elasticities from scattering data.

I. Introduction

A fundamental question of scattering theory is this: to what extent
is the scattering amplitude determined when the differential cross-section
is given and the unitarity condition is imposed? The problem is inter-
esting in connection with phase-shift analysis, as well as in epistomolog-
ical questions of quantum theory. For the case of spin-zero elastic scat-
tering, a partial answer was provided by Crichton [1], Newton [2],
Martin [3], and others [4]. Newton and Martin were the first to obtain
sufficient conditions for existence and uniqueness of an elastic amplitude
with a given cross-section.
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Research Grant.

** Address after July 1, 1972: Illinois Institute of Technology, Chicago, Illinois 60616.
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The elastic unitarity equation is a nonlinear integral equation for the
phase of the scattering amplitude, when the modulus (i.e. the differential
cross-section) is given. The problem, then, is to investigate solutions of
this integral equation.

The Newton-Martin conditions for existence and uniqueness of
solutions are stated in terms of the following functional of the differential
cross-section: . 1 2π

sinμ" sup Tπ^M J dy$d™0{y}- i ^ λ ^ i ^π9(x) -i o

• g{χy + [(1 - χ2) (i - /)]' cos w) ,
where x is the cosine of the scattering angle and

> (1.2)

k being the momentum and dσ/dΩ the differential cross-section. Newton
and Martin obtained the inequality sinμ < 1 as a sufficient condition for
existence of at least one continuous solution for the phase of the ampli-
tude, φ(x). We have noticed, however, that the proofs given in Refs. [2]
and [3] are incomplete, but that they can be completed.

By an application of the contraction mapping principle, Newton
showed that there is a unique continuous solution if sinμ<(5)~% and
that this solution may be obtained by iterating the equation. Martin
proved that there cannot be more than one solution if sin μ < sinμj = 0.79,
but he did not prove convergence of the iterative sequence when sinμ
is in this range. We find that the contraction mapping principle can be
applied for sinμ<sinμ 1, provided one introduces a new metric. Thus,
for sin μ< sii^, there exists a unique continuous solution which may
be obtained by iteration.

Next we account for inelasticity by adding a term to the unitarity
condition that represents absorption by other channels. Under suitable
restrictions, we prove existence and uniqueness of solutions of the
modified equation, assuming that the inelastic term is given. By means
of the implicit function theorem, we show that the solution φ varies
continuously when the inelastic term is varied continuously. (This is true
at least when the differential cross-section and inelastic term are such
that the contraction mapping principle applies: in other cases the ques-
tion is not settled.) This means that one can find a continuum of values
of the phase-shifts δt and elasticities ηh all corresponding to the same
differential cross-section. The continuum ambiguity remains even if one
includes the constraint of a fixed total cross-section, via the optical
theorem.

These remarks indicate an essential difficulty of phase-shift analysis
in the inelastic region. The existence of a continuum of solutions (even
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when experimental errors are assumed to be zero) has not been generally
recognized, since one always truncates the partial-wave series. The
truncation yields a finite number of minima of chi-squared in the phase-
shift fitting programme, so that one obtains only a finite number of dif-
ferent phase-shifts. The existence of a continuum of solutions depends
essentially on keeping an infinite number of partial waves. The existence
of a continuum ambiguity in the inelastic region was recognized by
Bowcock and Hodgson [4], who constructed a class of amplitudes with
the same modulus but different phases, all satisfying the constraint of
elastic unitarity. Our discussion is more general, since it applies to a
wide class of differential cross-sections, and it does not rely on a par-
ticular model.

We do not obtain a useful estimate of the amount by which the
inelastic term may be varied when the differential cross-section is fixed.
This question should be investigated numerically in specific cases [5].
One should also do numerical calculations for the regime in which our
analytical arguments do not succeed [5] (e.g. when the differential cross-
section or the inelasticity is too large).

Since energy-independent phase-shift analysis is faced with serious
ambiguities in the inelastic region, it is natural to enquire about the
prospects for energy-dependent analysis. The theorems of Newton and
Martin show that the latter is indeed possible, in principle, if one assumes
that the scattering amplitude is analytic in the energy E (in the usual cut
plane) at each x = cos 9. If the scattering lengths are finite, the function
g(x) vanishes uniformly as the energy approaches threshold from above,
which means that sinμ also vanishes in that limit. It follows that
sinμ < sii^ in some energy interval £0 g E ̂  £1? where E0 is the thresh-
old energy, and E± is less than the threshold for inelastic processes.
Hence, for E0 ^ E ̂  £1? we have a unique, continuous, unitary amplitude
with a given differential cross-section. The amplitude is then determined
at all E by analytic continuation, provided the differential cross-section
is known in any subinterval of [E0, E^]. As a matter of principle, it would
then be superfluous to perform energy-independent phase-shift analyses
in the inelastic region. Needless to say, these considerations are of very
little help in practical cases, because of the difficulty of making a stable
analytic continuation. Perhaps it is a useful reminder, however, of the
potential power of analyticity to reduce the ambiguites of scattering
phenomenology.

In Section 2, we define the notation and then study the integral
equation by means of the contraction mapping principle. We first employ
a Banach space of continuous functions with supremum norm, as in
Ref. [2], but obtain a slightly weaker condition for a contraction mapping
than that of Ref. [2]; viz., sinμ < sinμ0 ̂  0.62 in place of sinμ<(5)~^
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= 0.45. We then go over to a weighted L2 norm, which yields a contrac-
tion mapping for sinμ < sinμί ^ 0.79. This gives uniqueness of the solu-
tion for sinμ < sinμ1? (as in Ref. [3], but with a simpler proof), and also
furnishes a construction of the solution by iteration. The Appendix
generalizes the discussion based on the supremum norm, by taking
account of a lower bound for the integral which appears in Eq. (1.1).
The existence and uniqueness theorem proved in the Appendix repre-
sents a significant improvement on those of Section 2 in the case where
g(x) is a slowly varying function. In Section 3, we discuss the difficulty
of applying Schauder's fixed-point theorem to the unitarity equation.
By means of an explicit example, we show that the unitarity operator
does not map bounded sets in a Banach space S (consisting of continuous
functions with supremum norm) into compact subsets thereof. For this
reason, Schauder's theorem is not immediately applicable. In Sections 4
and 5 we work with a simple modification of the unitarity operator,
which does map a particular bounded, closed, convex set into a compact
subset of itself. The equation based on this operator is equivalent to the
original equation, so that we obtain an existence theorem via Schauder's
principle. In Section 4, the proof of compactness is carried out by a
partial wave method. This was suggested by Martin, but we take care
of some convergence questions which were left open previously. In Sec-
tion 5, the compactness proof is done by a new method which emphasizes
geometry, and which gives as a by-product a result on continuity of
solutions which is needed for the work of Section 2. Section 6 deals with
the inelastic case. Fixed point theorems are applied in much the same
way as in the previous sections. Only the supremum norm is used here,
since the method based on the L2 norm becomes quite awkward in the
inelastic case. The implicit function theorem is applied, under conditions
the same as those required for the contraction mapping principle, in order
to obtain the above-mentioned results on inelastic phase-shift analysis.
The interesting question of what happens when the implicit function
theorem is not applicable (i.e. when the Frechet derivative of the uni-
tarity operator becomes singular) is left to future analysis.

II. Notation and Existence Proof by the Contraction Mapping Principle

We write the elastic scattering amplitude for spinless particles at a
fixed energy as follows: . . , _ .,

j ( x ) = g(x) eφ( }, (2.1)

where g = \f\ and x = cosι9 is the cosine of the scattering angle. The
amplitude is normalized so that the differential cross-section is

άσ_

~dΩ''
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k being the momentum in the centre-of-mass frame. We suppose that
dσ/dΩ is given, and that the energy lies below the first inelastic threshold.
Then the unitarity condition is an integral equation for φ\ namely,

I 1 2π

sinφ(x) g(x) =— j ay \ dw g(y) g(z) cos \_φ(y) - φ(z)] , (2.2)
4π -i o

where
l- x2) (1 - y2)]1 cos w . (2.3)

For some purposes, it is convenient to make a change of variable, so
that the equation takes the following form:

sinφ(x) = J J H(x, y, z) cos \_φ(y) - φ(z)'] dy dz , (2.4)

000000 ,~0uf ϊH(x, y, z) -— — — - ̂ - 2 - TT^ - T2πg(x) [1 — x — y — z -f 2xyz] 2

The integration is over the region where the argument of the square-
root is positive. Let B(x; φ) or B(φ) denote the right-hand side of (2.4),
so that the equation may be written as

(2.6)

with A — sin"1!?. We note that if φ(x) solves (2.6), then so does ψ(x)
= π — φ(x), as is well known. This corresponds to changing the sign of
all of the phase-shifts, which does not affect the differential cross-section.

Initially, we look for solutions of (2.6) in the Banach space S con-
sisting of all real continuous functions φ on [—1,1] with the norm

||φ| |= sup \φ(x)\. (2.7)
-1 ^ jc^ l

We are interested in a subset T of S defined as

T={φ: φ e S , O g φ ^ μ } , (2.8)

where sinμ is the following functional of the differential cross-section:

= sup f \ H(x, y, z) dy dz . (2.9)

We suppose that g(x) is continuous and non-vanishing on [—1, 1], so
that sinμ is finite. The operator A maps T into itself, provided sinμ g 1.
This is clear from (2.2) and (2.8), if we note that the cosine in (2.2) is
non-negative if φ e T.

We shall now show that A is a contraction mapping of T into itself
under the further restriction

2 s i n μ t a n μ < l ; i.e. sin μ < sin μ0^ 0.62 . (2.10)



138 D. Atkinson et al\

That is, we show that

\\A(φl}-A(φ2)\\^β\\φl-φ2\\,

By the contraction mapping theorem [6], it then follows that there is
a unique solution of (2.6) in T, which is the limit of the sequence {φn},

φn + ί=A(φn), (2.12)

φ0 being an arbitrary element of T.
To establish (2.11), it is convenient to use the mean-value theorem

in the form [6]

\\A(φι)-A(φ2)\\^ sup P/(£φ1 + ( l - O φ 2 ) I H I φ ι - φ 2 l l , (2.13)
O ^ t ^ 1

where A'(φ) denotes the Frechet derivative of A, and the operator norm is

1 1 * 7 1 , n^Λ^\\F\= sup -Tj-jΓ— (2.14)
v e s ||φ||
φ Φ O

Eq. (2.13) holds for any operator A which is continuously Frechet-
differentiable on {φ:φ = ίφ 1+(l — ί ) φ 2 » 0 = ί = i } Note that a member
of this latter set belongs to T when φ1 and φ2 do (i.e. T is convex). Thus,
we have to show that ||^4'(φ)|| < 1 when φ e T, where A' is defined by

A'(φ)h=-(l-B2(φ))-*$lH(x9y9z)

• sin [φ(y) - φ(z)] [h(y) - h(z)] dy dz .

It is easy to check that A (φ) is continuous for φ e T, provided sinμ < 1.
Since \B(x; φ}\ ̂  sinμ and | sin [φ (y) — φ(z)}\ rg sinμ, we have from (2.9)
and (2.15) that

\\A(φ}h\\^Ί^^--Γ \\h\\, heS, φeT. (2.16)
(1 — sin μ)2

The condition (2.10) for existence of a unique solution in T follows. From
the analysis of Section 4, we also have a bound analogous to (4.22) on
the variation of the solution. Hence we have

Theorem 1. If g(x) is continuous on [—1, 1] and sin μ < sin μ0 = 0.62,
there is a unique continuous solution φ for which 0 ̂  φ rg μ. This solution is
the limit of the sequence {<£>„}, where φn+ι = A(φn), and φQ is any continuous
function such that 0^φ0(x)^μ. The convergence is uniform; i.e.,

\\9n~9\\— SUP \9n(x) ~~ <p(x)| -*0. The variation of φ with x is bounded

as follows:
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According to an argument of Ref. [3] (at the end of Section 2), there
is no solution at all with φ(x)<0 at any x, provided sinμ< 1. Since it
is obvious that φ(x) rg μ if φ is a solution, it follows that the solution of
Theorem 1 is the only continuous solution for which — π/2 g φ(x) ̂  π/2,
provided g(x) is continuous and sinμ<sinμ0.

In the Appendix we generalize Theorem 1 by using a strictly positive
lower bound of the integral in (2.9). In the generalization, a solution is
obtained for a bigger range of sinμ.

Martin also showed [following his Eq. (32)] that there cannot be
two solutions in T if

2 2 sίn^ / /
- - , i e > sin M< sin^ι = 0.79. (2.17)2 ,(1 -sm2μcos2μ) τ

He did not show that the mapping A is a contraction when (2.17) holds,
and so he could not be sure that the sequence (2.12) would converge,
We will now prove, however, that the operator is indeed contractive, but
with a topology different from that provided by the norm (2.7).

We make use of Schwarz's inequality in the manner of Martin. The
operator B = sin^l will be written as

B12(φ)=ί^-^^-COS[.φ13-φ32], (2.18)
^π 012

where Φ t 2 — φ(x\2) > etc > ^12 being the cosine of the angle between the
initial and final directions of the particle. Schwarz's inequality yields

rfΩ3 „ _ r, hi n
4π ^ι^zL-13 "32J J 4π

(2.20)

After defining

'"-I^^ΪΓ (2':
we combine (2.19) and (2.20) to obtain

A V LόV a £ \-'"Lό '" ύ 2-1 "12 _. ' ^Z.ZZJ

Recalling that Aφ = (1 -B 2 }~^B ψ , we see that (^4φ/ι)2 is majorized by

maximizing W^-R?./IΛ,^

with respect to B2

2 The quantity (2.23) is monotonic-decreasing as
a function of J52

2. If φ e T, then

cos μ W j 2 ̂  #12 ϋ W j 2 ̂  sin μ (2.24)
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from which it follows that

w 1 2(l-cos2μ) sin3μ

1 — w?2 cos μ 1 — sin μ cos μ
= M(μ). (2.25)

From inequality (2.22), one is led naturally to consider a Banach
space U consisting of all functions φ for which the following quantity,
the norm in 17, exists:

ί 4π
(2.26)

(2.27)

(The integrals here are defined in the Lebesgue sense.) We apply the
contraction mapping principle in a complete metric space V C U, where

= j </x0(x)φ 2 (x)

V={φ:φε (2.28)

The operator A of Eq. (2.6) takes V into itself. Furthermore, A is con-
tractive in its action on V under condition (2.17), as one sees by the
following calculations. Since (2.22) and (2.25) hold iϊ φeV, we have for
all h e U and all φ e V hat

(2.29)

Now we integrate (2.29) over all directions of both particle 1 and particle 2.
After one of the integrations, the left hand side is independent of the
other direction. Thus,

= IK
dΩ3 dΩj 2 . dΩ2

J^ΓJ 4π 9 l3"13J~ίΓ

dΩ3 f ^Ω2 ,2 r dΩι
~^ΓJΊk 3 3 2 / ί 3 2 J 4π βl3

dΩi_2c^3_c^2_ h c
J 4π J 4π y32 32 J 4π

cίΩ2

:- I 4π
13

(2.30)
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Hence, a sufficient condition that A be contractive is

2sin3μ

1 — sin μ cos μ 4π

dΩ2

\ -73-032

141

(2.31)

since in this case ||,4φ|| < 1, by (2.30). We can find a stronger sufficient
condition, which implies (2.31), by integrating the inequality

ί #13#32^< (2.32)

We integrate over both the 1 and 3 directions and cancel a factor to obtain

r
\ 4π

(2.33)

By putting together (2.33) and (2.31), we then have condition (2.17).

It follows now from the contraction mapping principle that, if μ < μ l 5

there is a unique solution of (2.6) in the set F, and that this solution is
the limit with respect to the topology of the norm (2.26) of the iterative
sequence {φn} defined in (2.12). We can show that this solution is actually
a continuous function on [ — 1, 1], as well as being merely bounded and
square-integrable. The analysis of Section V shows that if φ e F, then

\ φ) enjoys the following property of continuity:

\A(x1;φ)-A(x2;φ)\^M
x —

(2.34)

M>0, 0 < α < i .

Hence, the solution of the equation in V is bounded and continuous on
the open interval (— 1, 1). It is then easy to see that A is continuous on
the closed interval [— 1, 1], if we return to the equation in the form (2.2).
With Φ(x} = 4πg(x}B(x;φ\ Eq. (2.2) yields

£ f dy

(2.35)

Since g(x) is continuous on [—1,1] it is uniformly continuous on
[-1,1]. Also,

\z1-z2 ^ M l X i - X j l * , (2.36)

where M is independent of y, z, q and x2. It follows that / 2 <ε for
Xi — x2| sufficiently small. To apply a similar argument to / ls we note
that φ is bounded, so that the integral over a sufficiently small neighbour-
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hood of a point in the y — w plane at which zf = 1 can be made less
than ε, independently of zt. The integral 7l5 after deletion of such neigh-
bourhoods, may be treated in the same way as I2, since the integrand
then is uniformly continuous. It follows that Φ(x), and hence A(x; φ\ is
continuous on [ — 1, 1].

Every iterate φn9 as well as the limit φ, has the property (2.34). This
allows one to show that, for x2 φ 1, φn(x) converges point-wise to φ(x)
(and not merely in the mean-square sense). We assume the contrary, that
\φn(x) — φ(x)\, x2 Φ i, does not tend to zero as n goes to infinity. Then
there must be an infinite set S of integers, such that

|φn(x)-φ(x)|>2α, (2.37)

for all n e S. Since both φn and φ have the continuity property (2.34), we
know that there is a δ > 0 such that for all n

\φn(x) - φ(x) - φn(x') + φ(x')\ < a ,
(2. Jo)

\x-x'\<δ.

We take δ so small that x'2 < 1 when x — x' < δ. From (2.37) and (2.38),
it then follows that

\φn(x') - φ(x')\ > α , x - x'| <δ , (2.39)

for all n e S. Hence

~ J dx' g(x'} lφn(xf) - φ(x')]2 > δa2 sup# (2.40)

for all n e S. But this is impossible, since the integral on the left is
\\φn — φ||2, which tends to zero as n increases. We have now proved

Theorem 2. // g(x) is continuous on [—1,1] and sinμ<sinμ 1 = 0.79,
there is a unique solution φ such that 0 rg φ g μ and such that the following
Lebesgue integral, the squared norm of φ, exists:

dxg(x}φ2(x).
-t

This solution is the limit of the sequence (φj, where φn + 1 = A(φn\
and φ0 is any function such that ||φ0|| exists and 0^φ 0^μ. The con-
vergence is in the mean square sense (||φ — φn\\ ->0), and also point-wise
except at the end-points (i.e. for each x φ ± 1, \φn(x) — φ(x)\ -^0). The
solution φ is continuous on [— 1, 1] and has the property
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where M > 0 and 0 < α < ^. The conclusions are all the same if the con-
dition sinμ<sinμ 1 is replaced by the weaker inequality (2.31).

As in the remark following Theorem 1, we can assert that the solution
of Theorem 2 is actually unique in a bigger set. if g(x) e C[ — 1,1] and
μ<μ1 ? then there is a unique solution in the set of all functions φ such
that | | | | exists and — π/2

III. Remarks on the Application of Schauder's Theorem

One attempts to apply Schauder's theorem [7] in the following form:
If a continuous operator A maps a closed convex subset F of a Banach
space E into a compact subset of F, then φ = A(φ) has at least one
solution in F. (It is understood that the metric is provided by the norm

in E:d(φ,ψ)=\\φ-ψ\\.)
Newton [2] identified the Banach space E with the space S defined

in the previous section; i.e. the space of real, continuous functions on
[ — 1,1] with the uniform norm (2.7). Newton's argument is based on the
assumption that A(T) is compact, where T is defined in Eq. (2.8)^ We
shall now show, by means of a counter example, that A(T) is in fact
not compact.

The idea of our proof is to display a sequence {φn} of functions,
φn E T, in which φn oscillates with increasing frequency as n tends to
infinity. By means of simple estimates, we find that the functions A(φn),
n = i, 2,... form a non-equicontinuous set. By the necessity clause of the
Ascoli-Arzela theorem [6], it follows that the A(φn] form a non-
compact set.

We first define a set of piecewise-continuous functions ψn(x), which
approximate the φn(x) (in a sense to be specified later):

ίε, fc < nx < k-h 1,
Ψn [0, k+l<nx<k + 2,

(3.1)
k=—n, — n + 2,..., n — 2 ,

0 < ε < μ < π/2 .

To make the example as simple as possible, we take an amplitude with
constant differential cross-section: g( x) —grgs inμ. We first estimate the
unitarity integral for the approximating amplitude

geivM. (3.2)

1 Prof. Newton has corrected his proof by using a space of Holder-continuous func-
tions (private communication). This technique requires g(x) to be Holder-continuous, with
a sufficiently small Holder coefficient. Our proofs of Sections 4 and 5 require only ordinary
continuity of g(x).
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With the variables of Eq. (2.3), the integral is

y 1 2π

B(x',ψn)= j dy j dw cos[φπ(y) — ψn(z)~]

9 ~l ° (33)

= —— (Ω+ + cosεΩ_),
4π

with
z = xy+[(l- x2) (1 - y2)]^ cos w . (3.4)

Here Ω+ is the solid angle in which ψn(y) = ψn(z\ and Ω_ that in which
Ψn(y) — ψn(z)= ±ε. We first prove the following Lemma: There exists
a solid angle w > 0, independent of x, such that Ω_ ̂  w when n > n0(x),
for any xΦ + i.

Let χ(x, y, w) be the characteristic function of the set on which
Ψn(y) ~Ψn(z)= iε; that is, χ = 1 on this set and χ = Q elsewhere. Then

1 2π
Ω- = ί dy j dw χ(x, y, w)

o
2π

^ J dy j rfwχ(x,y,w) (3.5)
o

= 2
ι?

ί - χ(x,y,w(ι;)), (3.5)
—-i

where v = cos w. For fixed y, the variation of z as z; varies from — 1 to 1 is

Zlz = 2[(l-x2)(l-.y2)]^2[(l-x2)!]*. (3.6)

Since we have x2 Φ 1, we may choose n0(x) such that

n0(x)Az^2n0(x)[_(l-x2)^^2. (3.7)

Then for any y and n^n,ψn (z) is equal to ε over at least one third of the
interval — 1 ̂  υ ̂  1, and equal to zero over at least one third of the same
interval. Hence \ψn(y) — ψn(z}\ =ε over at least a third of the interval.
Since (1 — υ2)~^ is smallest near v = Q, we have the desired lower bound

onΩ- : * * do
Ω-^2 j dy\ ^-^=w>0. (3.8)

-1 -i ^ ~v )

Having proved the lemma, we now prove that the functions B(x'9ψn)
form a non-equicontinuous set.

From (3.3) and the relation Ω+ +Ω_=4π we have

a (3 9)

-—(l
4π
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Eq. (3.9) holds for any x φ ± 1, with g0 independent of x, provided
n > n0(x). On the other hand, B(i ιpn] = g, so that for sufficiently large n,
B(xι\pn) becomes arbitrarily sharply peaked at x= 1. Equicontinuity of
the functions B(x;ψn) would require that for any ε>0 there exists a δ
independent of n such that

\B(l ,ψJ-B(χ 9ψn)\<s (3.10)

when |1— x\<δ. However, we see from (3.9) that the B(x]ipn) are not
equicontinuous, since for any δ > 0 and |1 — x| < δ we can choose an n
so large that

J-B(xιψn)\^g-g0. (3.11)

The continuous functions φn, which approximate ψn, may be chosen
as follows (see Fig. 1):

- (nx + fc + 1
2η

-- (nx-k-2 + η)

and — n ̂ nx ^ — i
k+i-η^nx^k+l+η ,

k+ I +η ^nx^k + 2 — η
and n — δ ζnx^n,

(3.12)

Now we can show that for any δ > 0 and \l — x\<δ, there is an n and
an η such that

n)-B(χ ,φn)\^g-g0-Kη, (3.13)

K > 0 being independent of x and n. Thus, if η is chosen so that
Kη<g — g0, the B(x;φn) are not equicontinuous. To establish (3.13),
note that

\B(ί φn)-B(x;φn

(3.14)

-1 x —^ +1

Fig. 1. The continuous function φn(x) of Eq. (3.12), with n = 5
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provided that the last quantity on the right can be made less than g — gQ.
But now note that \φn(y) — ψn(y)\ is zero, except in 2n — 1 intervals of
length 2η/n each, where it is bounded above by ε/2. Consequently,

\B(x;ιpn)-B(x',φn)\
1 2π

<*g J dy J dw cos(ψn(x)-\pn(z))-cos(φn(x)-φn(z))\

(3.15)

dy J dw|φΠ(x)-φΠ(x)-y;Π(z) + φΛ(z)|
V

- 1 0

ηε < Kη .
n

We have now established that the B(x;φn] are not equicontinuous,
and to complete the proof need note only that the same is true of the
A(x', φn) = $in~l B(x; φn}. This follows from the mean value theorem:

n n
(3.16)

^\B(l;φn)-B(χ φn)\, x<ξ<\.

Martin recognised the difficulty of proving the compactness of A(T).
In order to overcome this difficulty, he replaced T by T, defined to be
the closure of the convex hull of the set A(T}. Martin proved that the
set A(T] is compact, and was able to apply Schauder's theorem. However,
in the course of the demonstration of compactness, he employed a
partial-wave series, the convergence of which was not discussed. In the
following section, we show that the convergence question can be treated
satisfactorily, and we thus complete the Schauder proof (which we do in
a way slightly different from that of Martin).

IV. Schauder Fixed-Point Proof with Partial Waves

We shall now describe an existence proof using Schauder's theorem
and a partial-wave development. The first step is to state the unitarity
condition in terms of partial waves. In scattering theory, this is normally
a trivial step, since one is dealing with analytic functions, and so the
Legendre series converges absolutely and uniformly. In the present
instance, in which only continuity of f(x) is available, we cannot assert
the point-wise convergence of the series

(4.1)

where the £ are the Legendre coefficients of /(x), namely
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(The series (4.1) does converge in the mean to /(x), but this is not suf-
ficient in itself to justify Eq. 8 of Ref. [2]).

Let us first note that since the function f(x) is continuous on the
closed interval [ — 1,1], it may be uniformly approximated by poly-
nomials on this interval. Specifically, the Weierstrass approximation
theorem guarantees that for any ε > 0 there exists a polynomial SL(x) of
degree L such that

|/(x)-SL(x)|<e, - l ^ x ^ l . (4.3)

We may express SL in terms of Legendre polynomials:

ι = o

Note that the (flexible) coefficients b\ depend on L as well as on /. We
define an auxiliary function /(x) as

/(x) = ] dy f dwίf(y)- SL(y)-] [/*(z) - Sj£(z)] , (4.5)
-1 0

where the asterisk denotes complex conjugation and

z = xy + [(1 - χ2) (1 - j;2)]* COS W . (4.6)

The bound (4.3) yields

|/(x)| ^4πε2 . (4.7)

We may use the identity

2π

2π
to obtain

/(x)= } dy f dw/00/*(*)-4π £ (21+ 1) {|/;|
2 - \tf - ft\

2} P,(x).
-1 0 Z = 0

(4.9)
Thus we have

1 1 2π

j dy j dw/W(z)= lira Σ (2/+l){ |/ / |
2-|6f-/ ί |

2}P,(x),
4π _\

(4.10)

where the limit L—>oc is approached uniformly in x. By the usual com-
pleteness and orthogonality of the Legendre polynomials, we have the
Parseval equation, which holds for any square-integrable function /:

lim Σ (2/+1) /z|
2 = i } dy\f(y}\2<^. (4.11)
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On the other hand, by putting x = 1 in (4.9) we obtain

lim £ (2/ + 1) {\fι\2 ~ Ibf - fι\2} = I f dy \f(y}\2 . (4.12)
L-oo jfo -l

Hence,

Hm Σ (2/+l) |b f-/ / | 2 -0, (4.13)

Since |P/(x)| ̂  1, we have also that

L

lim V (2/+l) |/ / |
2 P / (x)<oo (4.14)

and

lim £ (2/+l) |bf-/ z | 2 P z (x) = 0. (4.15)
L-*cc / = Q

It then follows from (4.9) that

-±- } d y 2 $ d v » f { y ) f * ( z ) = £ (2/+l) |/ / |
2 P / (x), (4.16)

4^ -i o ι=o

where the series on the right converges absolutely and uniformly with
respect to x in [ — 1, 1]. This completes the justification of Eq. 8 of Ref. [3].

Our fixed point problem may now be written in the form

φ(x) = A(x; φ) = sin"1 B(x\ φ) , (4.17)

)= £ (21 + 1) |/,[φ]|2 Pz(x) , (4.18)
u =

where

^"'. (4.19)

We now investigate the continuity properties of functions in the set A(T),
where T is defined in Eq. (2.8). When φ e T, we have

|B(x ι ; φ)-B(x 2 ;φ) |fg Σ°(2/+ 1) l/^φ]!2 IΛ^-P^)!, (4.20)
ι = o

where the series converges, by comparison with (4.11). We can now
invoke Martin's bound on |P/(XI) — Pz(x2)l (Eq. 10 of Ref. [3]) to obtain

|β(x1;φ)-β(x2;<P)|^M-l^pXl-COS"X2

-xJ
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where we have chosen x2 ^ x2, and we have used the mean value theorem
for cos""1*. Hence by (4.18) and (4.21)

βM-aM S(χι.φ)

gMg(*2} (422)

+ ~τ~~y \B(XI φ) - S(x2 φ)\ ̂  M -r̂ t̂ + M Iβ (*ι) - g(χ2)\ >

where the constant M is independent of φ. Finally, we use the mean value
theorem for sin"1 B, and the fact that |B(φ)| ̂  sinμ < 1, φ e T, to obtain

) - g ( χ 2 ) \ 9 xl^xl. (4.23)
I 1 "~ ^21

The factor |1 — x\\~* in (4.23) is a manifestation of the lack of equi-
continuity of the set of functions A(x\φ\ φ e T, that we made explicit
in Section 3. To deal with this factor, we rewrite the unitarity equation
as follows:

V?(x) = C(x;v>), (4.24)

C(x;φ) = (l-x2)* A ( x ; φ ) 9 (4.25)

where in (4.25) we put

(l-x2)-ϊψ(x). (4.26)

The following set, V9 is bounded, closed, and convex with respect to the
norm topology of the Banach space S defined in (2.7):

V={ψ:ψeS, 0^φ(x)^(l-x 2)^μ, O ^ x g l ) . (4.27)

The operator C maps V into itself, provided sinμ< 1. Also, C is con-
tinuous on V9 according to the following argument:

\A(x;φί)-A(xιφ2)\
j 1 2π

= ~ ί dy ί d

2 ΐ

-T- ί *y4π _\

M sup
-1 <>;< 1
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Hence \\C(ψί) — C(ψ2)\\ ^^\\Ψι ~Ψ2\\- Next we remark that the set C(F)
is compact by virtue of the Ascoli-Arzela theorem and Eq. (4.23). That
is, with x2

2 ^ xl we have

Since we have assumed that g(x) is continuous, the functions C(x; ψ\
ψ E F, are uniformly bounded and equicontinuous, so C(V) is a compact
subset of F, by the Ascoli-Arzela theorem. It follows from Schauder's
theorem that there is at least one solution of Eq. (4.24) in V. There is,
therefore, at least one solution of φ = A(φ) in T.

Theorem 3. If g(x) is continuous, — 1 ̂  x ̂  1, and sinμ < i, there is at
least one continuous solution φ(x) such that 0^
Every such solution has the property

M > 0,
1-x?

V. Schauder Fixed-Point Proof without Partial Waves

We now give another proof of the theorem of the last section, which
is more elementary in that it avoids delicate convergence questions, and
does not require a bound for the modulus of Holder-continuity of
Legendre functions.

As in the previous section, we apply Schauder's theorem to the
equation in the form (4.24), considering C as a mapping of V into itself.
The new proof differs from the previous one only in that we use a dif-
ferent method to obtain an inequality similar to (4.21). We work with
the operator B = gsinA in the form (2.4), and begin by noting that for
any ψ e V we have

1 "'" izg(y)g(z)
f c ( x l 5 y , z ) k ( x 2 9 y , z )™= 2π

where

fc(x, y, z) = [1 - x2 - y2 - z2 + 2xyzγ , (5.2)

and χt (y, z) is the characteristic function of the region where k2 (xt, y, z) > 0,
i = 1,2. It is convenient to decompose χi as

γΛ(y, z) = χ(y, z) + γΛ(y, z), (5.3)
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where χ = 1 when χί=χ2 = 1, and is zero elsewhere. Then

|B(X! φ) - B(x2 φ)\ ̂  — J j dy dz g(y) g(z)

1 1 ~ ~

151

k ( x l 9 y 9 z ) k ( x 2 9 y 9 z ) k(x2,y,z)

ΞD 1 +D 2 + D 3 .

The following change of variable is convenient :

In these variables, one sees that

2 2 I/c (jx, y, z) — f 1 — x ) 1

(5.5)

the curve k2 = 0 is an ellipse, since

(5.6)

We consider now the first term of (5.4) as D^ = D12 + D21, where Dl2(D2ί)
is that part of the integral where k(x l5 y, z) is greater (less) than k(x2,y,z).
To estimate D12, we use the inequality

1 1

k1 k2

1
= U + 2α

With the variables r2? B29 where

we have

|x — x α

I 1 21 = i i +2α '
K2

α 1 J 27,

f 1̂ 2 ΓJ Π r

2^i + a J
0 V 1 ~"Γ2J 0

(5.8)

(5.9)
I ~~ X2 0 (1 ~~Ύ2) 0

where we have majorized the integral by extending the Θ2 integration to
the entire region [0, 2π]. A similar treatment of D21 (ki and k2 being
interchanged) yields finally

(5.10)
2

0 < α < \, x2 ̂  xl.

We majorize the term D2 by replacing the integration domain by the
nulus formed between the two ellipses

,.2 ,.2

(5.11)

and
l-x.

(5.12)

11 Comniun math Phys., Vol 28
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Fig. 2. The ellipses (5.11) and (5.15) (solid), and (5.12) (dotted)

where we are taking first the case x2<0, so — 1 ̂ x2 = xι = ~xι = l
It may be shown that this elliptical annulus contains the support of γΛ

(see Fig. 2). Moreover, fc(xl5y,z) is positive in this region. In terms of
the variables r1? $15 where

we have
-Y \ i

<M

(5.13)

(5.14)

where α g ^>. Similarly, we majorize D3 by integrating over the annulus
between the ellipses

u2 v2

and

— x2

This time we transform to r2, θ2, Eq. (5.8), and obtain

<M

(5.15)

(5.16)

(5.17)
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In much the same way we find that, when x2 > 0, so — 1 rg — x2 Ξ x t

D7<M

Thus we certainly have, whenever x\ ^ xf ,

(5.18)

(5.19)

We now may combine the results (5.10) and (5.19) to obtain an
inequality which can be used in place of (4.21) in the proof of the
previous section; namely

xl-x2

\B(Xl ,φ)-B(x2;φ)\£M (5.20)

The rest of the proof is essentially the same as in Section 4.

VI. Inelastic Regime

To allow for inelasticity, we add a term to the right hand side of
Eq.(2.3):

(6.1)

(6.2)
9(x) ι = o

The elasticity is denoted by η{, where the partial-wave amplitude is

_ η,e2iδ>-l

The inelastic term gl is usually assumed to be analytic in x in an ellipse
with foci at x = + 1, from which it follows that the series of (6.2) con-
verges absolutely and uniformly for — l < x < l . We need only the
weaker assumption that the series converges to a continuous function of x.

It is possible to prove existence theorems for Eq. (6.1) by the same
methods that were used in Sections 2, 4, and 5 (i.e., by the contraction
mapping principle or by Schauder's theorem). The principal change
concerns the condition that the set 0 ̂  φ rg μ < π/2 be mapped into itself.
That condition now takes the form

sup [J J dy dz H(x, y, z) + |/(x; η}\~] ^ sinμ . (6.3)
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Under condition (6.3), and the requirement that g(x) and /(x, η) be con-
tinuous, there is at least one continuous solution φ(x) of (6.1), such that
Orgφ(x)gμ, provided s inμ<l. This follows from an application of
Schauder's theorem, as in Sections 4 and 5.

For the contraction mapping proof, it is convenient first to define
sinμ' ̂  sinμ as follows:

sinμ' = sup f f H(x, y, z) dy dz . (6.4)
- l ^ x ^ l

By repeating the argument of Section 2, we now find that the operator
will satisfy the contraction conditions if (6.3) holds and

2 sinμ' tanμ< 1 . (6.5)

Implementation of condition (6.3) is slightly awkward, so it might be
convenient to replace it by the following stronger inequality, which is an
explicit restriction on /:

|/(x η)\ ̂  sin μ — sin μ' . (6.6)

If conditions (6.3) and (6.5), or (6.6) and (6.5), are satisfied, then there
exists for each choice of / and g a unique continuous solution φ such

For a fixed g, we can vary / within the limits of inequality (6.6), and
still have a solution. By means of the implicit function theorem, we can
show that φ depends continuously on /. We write

F(φ9l)=smφ-B(φ)-I, (6.7)

and notice that F has continuous Frechet derivatives with respect to
both φ and / in a neighbourhood of a point (φ0,/0), where φ0(x) and
IQ(X) are any functions continuous on [—1,1]. Note that —FI=\ is
the unit operator. Let φ0 be the unique solution obtained from the con-
traction mapping principle under conditions (6.3) and (6.5), with I = IQ.
Then

/o) = 0, (6.8)

and if F~l(φ0,I0} exists, the implicit function theorem [6] guarantees
the existence of a unique function of /, denoted by φ(x; /) or φ(I\ which
is continuously differentiable in some neighbourhood Ω of J0, and such
that

(i) F(φ(I),I) = Q, IeΩ, (6.9)

(ii) φ(I0) = φ0, (6.10)

(iii) i^=Fφ-i(φ(/)), leΩ. (6.11)
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The existence of F^1(φQ,I0) follows from the contraction mapping
theorem, under the conditions (6.3) and (6.5) that we have already
imposed. To see that, we merely have to show that the following equation
has a unique solution h in the space S (of Section 2) for every right side,
ζES'' Fφh = cosφQh-Bφ(φΌ)h = ζ. (6.12)

Because of (6.8), this may be written as

h = {ί-lB(φ0) + IΌ]2Γ^Bφ(φ0)h + ζ ]=s/(h). (6.13)

For all ζ e S, the operator sέ maps S into itself, and the mapping is con-
tractive under conditions (6.3) and (6.5), or (6.6) and (6.5). Hence (6.13)
has a unique solution in S, for all ζ e S.

According to Eq. (6.9) we may vary / throughout the region Ω, and
still have an amplitude which has the same modulus. This amplitude will
obey the constraints of inelastic unitarity, provided we vary / so that the
conditions 0 rg ηt ̂  1 are respected. It is clear that there is an infinite
subset Ω' of Ω in which these conditions hold. One can obtain the phase
of the amplitude, in principle, by solving the differential equation (6.11)
with the initial condition (6.19).

The basic problem of phase-shift analysis in the inelastic region may
be stated as the determination of φ(x) and 7(x), given g(x\ since this then
determines all of the real parts of the phase-shifts and the elasticities.
We have already seen that, in the domain where inequalities (6.3) and
(6.5) hold, the solution for δl and ηh given 0, is not unique. In fact, there
is a continuum of (5z's corresponding to the continuum of ηjs for which
/ 6 Ω'. Each solution in this continuum gives partial-wave amplitudes /z

which lie within the unitarity circle, |1 -f 2 ίft\ ^ 1.
From the implicit function theorem alone, one does not have a useful

estimate of the size of the region Ω. One expects that the solution of the
differential equation (iii) will extend at least as far as the first singularity
of Fφ, but the location of such singularities is a quantitative question.
In specific cases, one might throw some light on the problem by nu-
merical solution of the differential equation [5]. For numerical work, it
would be appropriate to effect the alteration in / by varying a finite
number of the ηt. In the simplest situation we would vary only one ηl

at a time, in which case the operator differential equation (6.11) is replaced
by the vector differential equation

-̂  - -F^(φ(ηι)) ~ (l + $)ηlPl. (6.14)
dηt

 φ g

In practical phase-shift analysis, one normally introduces the con-
straint of the optical theorem; i.e.,

k2

Im/(l)= —σ, (6.15)
4π
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where σ is the total cross-section. In the elastic case, the solution of the
integral equation (2.2) automatically satisfies Eq. (6.15). In the inelastic
case, the optical theorem determines 1(1) in terms of σ and σεh the latter
being the total elastic cross-section. By evaluation of Eq. (6.1) at x = 1,
one obtains

-- dy dwg2(
_

or

-f-σ=~σεl + g ( l ) I ( l ) . (6.16)
4π 4π

In varying the ηt for a given g(x) and given σ, we must then observe
the constraint

00 / 1 _ n2 \ L-2
Σ (2, + 1,(̂ ) = -(,-,„,. (6.17)

In the above argument concerning variations of the inelastic term, we
are now restricted to variations of / within a set Ω" C Ω' C Ω. We could
easily permit the quantities ηl to vary, such that the constraint (6.17) is
satisfied. Clearly, this still allows continuous variations of /, so we retain
the continuum ambiguity in inelastic phase-shift analysis.

Appendix

An easy improvement of Theorem 1 is possible, since

sin v - _ inf j j H(x, y, z) dy dz (A. 1)

is necessarily greater than zero. The set

f = {φ:φeS, λ^φ^μ}, A > 0 , μ<π/2. (A.2)

is mapped by A into itself, if

sin v cos μ
tanλ ̂  tan^o - - : - ί— . (A.3)

1 — sin v smμ

This is seen by noting that if φ e T, then

sin v cos (μ — λ) ̂  sin A (φ) :g sin μ . (A. 4)

From (2.15) one has that

(

2

μ-λ} Wl, φef, heS, (A.5)
(^i — sin μ)

so that A is a contraction mapping of T into itself provided that

2 tanμs in(μ-A)<l . (A.6)
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If 0 ̂  μ ̂  μ1, we retrieve the results of our previous discussion, since
then both (A.6) and (A.3) are satisfied with λ = 0. If μ 1 rgμ<π/2, in-
equality (A.6) requires λ1<λ<λ2ί where λί and λ2 are the two roots of
the equation

2 tanμ sin (μ-;.)=!. (A. 7)

This equation is quadratic in tan λ, and has the solutions

(2 tan μ sin μ)2 — 1
= cosμ

4sin 3μ±[5sin 2μ- (A. 8)

The solutions are both positive if μ 1<μ<π/2, while A1(μ1) = 0. Thus,
the condition λ > λ1 joins continuously to the condition λ = 0 as μ passes
through μx. To apply the contraction mapping principle for μ1 ^ μ < π/2,
we require tan λ1 < tan λ in order to satisfy (A. 6), and also tan λ ̂  tanλ0

to satisfy (A. 3). Since tanλ0 is a monotonic increasing function of sinv,
the resulting inequality tan/^ <tanA 0 implies a lower bound on sinv.
The explicit lower bound may be read off from (A. 8) and (A. 3), but it
comes out in a simpler form through the equivalent procedure of solving
the following equation for sinv:

2 tan μ sin (μ — A 0(sinv, μ))= 1 .

This is quadratic in sinv, and leads to the result

s inv> sinμ — (4tan2μ — l)~

(A.9)

In Fig. 3 we show a graph of the right hand side of (A. 10). Because
sin v > 0, we always obtain a bigger range of μ than that allowed in
Theorem 1.

Theorem 1 A. // g(x) is continuous on [—1,1], μ1:gμ<π/2, and
sinv > sinμ — (4 tan 2μ— 1)"^ cosμ, there is a unique continuous solution

0.65 0.70 075 0.80 0.85 0.70 0.95 1.00
sinμ-—+-

Fig. 3. The minimum of sinv, as a function of sinμ
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φ with O r g A r g φ gμ; here λ]_<λ<λ2, where λί and λ2 are given by
Eq. (A. 8). The solution is the limit of the sequence {φj, where φn+ί=A(φn),
and φQ is any continuous function such that λ^φ^μ.

The advantage of Theorem 1A over Theorem 1 becomes more im-
portant as the upper and lower bounds of the integral J j H(x, y, z) dy dz
draw together. In the extreme event that this integral is constant,
(realized in the case of pure s-wave scattering where g(χ) = g = constant),
the hypotheses of Theorem 1A are satisfied for any μ < π/2. We then
have φ(x)= sin~ίg = μ as the unique continuous solution for which
— π/2^φ(x)^π/2. This result was proved to one of us in a slightly
different way by Martin.
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